vpncloud/src/cloud.rs

896 lines
32 KiB
Rust

// VpnCloud - Peer-to-Peer VPN
// Copyright (C) 2015-2019 Dennis Schwerdel
// This software is licensed under GPL-3 or newer (see LICENSE.md)
use std::{
cmp::min,
collections::HashMap,
fmt,
fs::{self, File},
hash::BuildHasherDefault,
io::{self, Write},
marker::PhantomData,
net::{SocketAddr, ToSocketAddrs},
path::Path
};
use fnv::FnvHasher;
use rand::{prelude::*, random, thread_rng};
use super::{
beacon::BeaconSerializer,
config::Config,
crypto::Crypto,
device::Device,
net::Socket,
poll::{WaitImpl, WaitResult},
port_forwarding::PortForwarding,
traffic::TrafficStats,
types::{Error, HeaderMagic, NodeId, Protocol, Range, Table},
udpmessage::{decode, encode, Message},
util::{resolve, CtrlC, Duration, Time, TimeSource}
};
pub type Hash = BuildHasherDefault<FnvHasher>;
const MAX_RECONNECT_INTERVAL: u16 = 3600;
const RESOLVE_INTERVAL: Time = 300;
pub const STATS_INTERVAL: Time = 60;
struct PeerData {
timeout: Time,
peer_timeout: u16,
node_id: NodeId,
alt_addrs: Vec<SocketAddr>
}
pub struct PeerList<TS: TimeSource> {
timeout: Duration,
peers: HashMap<SocketAddr, PeerData, Hash>,
nodes: HashMap<NodeId, SocketAddr, Hash>,
addresses: HashMap<SocketAddr, NodeId, Hash>,
_dummy_ts: PhantomData<TS>
}
impl<TS: TimeSource> PeerList<TS> {
fn new(timeout: Duration) -> PeerList<TS> {
PeerList {
peers: HashMap::default(),
timeout,
nodes: HashMap::default(),
addresses: HashMap::default(),
_dummy_ts: PhantomData
}
}
fn timeout(&mut self) -> Vec<SocketAddr> {
let now = TS::now();
let mut del: Vec<SocketAddr> = Vec::new();
for (&addr, ref data) in &self.peers {
if data.timeout < now {
del.push(addr);
}
}
for addr in &del {
info!("Forgot peer: {}", addr);
if let Some(data) = self.peers.remove(addr) {
self.nodes.remove(&data.node_id);
self.addresses.remove(addr);
for addr in &data.alt_addrs {
self.addresses.remove(addr);
}
}
}
del
}
pub fn min_peer_timeout(&self) -> u16 {
self.peers.iter().map(|p| p.1.peer_timeout).min().unwrap_or(1800)
}
#[inline]
pub fn contains_addr(&self, addr: &SocketAddr) -> bool {
self.addresses.contains_key(addr)
}
#[inline]
pub fn is_connected<Addr: ToSocketAddrs + fmt::Debug>(&self, addr: Addr) -> Result<bool, Error> {
for addr in resolve(&addr)? {
if self.contains_addr(&addr) {
return Ok(true)
}
}
Ok(false)
}
#[inline]
pub fn contains_node(&self, node_id: &NodeId) -> bool {
self.nodes.contains_key(node_id)
}
#[inline]
fn add(&mut self, node_id: NodeId, addr: SocketAddr, peer_timeout: u16) {
if self.nodes.insert(node_id, addr).is_none() {
info!("New peer: {}", addr);
self.peers.insert(addr, PeerData {
timeout: TS::now() + Time::from(self.timeout),
node_id,
alt_addrs: vec![],
peer_timeout
});
self.addresses.insert(addr, node_id);
}
}
#[inline]
fn refresh(&mut self, addr: &SocketAddr) {
if let Some(ref mut data) = self.peers.get_mut(addr) {
data.timeout = TS::now() + Time::from(self.timeout);
}
}
#[inline]
fn make_primary(&mut self, node_id: NodeId, addr: SocketAddr) {
if self.peers.contains_key(&addr) {
return
}
let old_addr = match self.nodes.remove(&node_id) {
Some(old_addr) => old_addr,
None => return error!("Node not connected")
};
self.nodes.insert(node_id, addr);
let mut peer = match self.peers.remove(&old_addr) {
Some(peer) => peer,
None => return error!("Main address for node is not connected")
};
peer.alt_addrs.retain(|i| i != &addr);
peer.alt_addrs.push(old_addr);
self.peers.insert(addr, peer);
self.addresses.insert(addr, node_id);
}
#[inline]
pub fn get_node_id(&self, addr: &SocketAddr) -> Option<NodeId> {
self.addresses.get(addr).cloned()
}
#[inline]
pub fn as_vec(&self) -> Vec<SocketAddr> {
self.addresses.keys().cloned().collect()
}
#[inline]
pub fn len(&self) -> usize {
self.peers.len()
}
#[inline]
#[allow(dead_code)]
pub fn is_empty(&self) -> bool {
self.peers.is_empty()
}
#[inline]
fn subset(&self, size: usize) -> Vec<SocketAddr> {
self.peers.keys().choose_multiple(&mut thread_rng(), size).into_iter().cloned().collect()
}
#[inline]
fn remove(&mut self, addr: &SocketAddr) {
if let Some(data) = self.peers.remove(addr) {
info!("Removed peer: {}", addr);
self.nodes.remove(&data.node_id);
self.addresses.remove(addr);
for addr in data.alt_addrs {
self.addresses.remove(&addr);
}
}
}
#[inline]
fn write_out<W: Write>(&self, out: &mut W) -> Result<(), io::Error> {
writeln!(out, "Peers:")?;
let now = TS::now();
for (addr, data) in &self.peers {
writeln!(out, " - {} (ttl: {} s)", addr, data.timeout - now)?;
}
Ok(())
}
}
#[derive(Clone)]
pub struct ReconnectEntry {
address: String,
resolved: Vec<SocketAddr>,
next_resolve: Time,
tries: u16,
timeout: u16,
next: Time
}
pub struct GenericCloud<D: Device, P: Protocol, T: Table, S: Socket, TS: TimeSource> {
config: Config,
magic: HeaderMagic,
node_id: NodeId,
peers: PeerList<TS>,
addresses: Vec<Range>,
learning: bool,
broadcast: bool,
reconnect_peers: Vec<ReconnectEntry>,
own_addresses: Vec<SocketAddr>,
table: T,
socket4: S,
socket6: S,
device: D,
crypto: Crypto,
next_peerlist: Time,
peer_timeout_publish: u16,
update_freq: u16,
buffer_out: [u8; 64 * 1024],
stats_file: Option<File>,
next_housekeep: Time,
next_stats_out: Time,
next_beacon: Time,
port_forwarding: Option<PortForwarding>,
traffic: TrafficStats,
beacon_serializer: BeaconSerializer<TS>,
_dummy_p: PhantomData<P>,
_dummy_ts: PhantomData<TS>
}
impl<D: Device, P: Protocol, T: Table, S: Socket, TS: TimeSource> GenericCloud<D, P, T, S, TS> {
#[allow(clippy::too_many_arguments)]
pub fn new(
config: &Config, device: D, table: T, learning: bool, broadcast: bool, addresses: Vec<Range>, crypto: Crypto,
port_forwarding: Option<PortForwarding>, stats_file: Option<File>
) -> Self
{
let socket4 = match S::listen_v4("0.0.0.0", config.port) {
Ok(socket) => socket,
Err(err) => fail!("Failed to open ipv4 address 0.0.0.0:{}: {}", config.port, err)
};
let socket6 = match S::listen_v6("::", config.port) {
Ok(socket) => socket,
Err(err) => fail!("Failed to open ipv6 address ::{}: {}", config.port, err)
};
let now = TS::now();
let update_freq = if socket4.detect_nat() && config.get_keepalive() > 120 {
info!("Private IP detected, setting keepalive interval to 120s");
120
} else {
config.get_keepalive() as u16
};
let mut res = GenericCloud {
magic: config.get_magic(),
node_id: random(),
peers: PeerList::new(config.peer_timeout),
addresses,
learning,
broadcast,
reconnect_peers: Vec::new(),
own_addresses: Vec::new(),
peer_timeout_publish: config.peer_timeout as u16,
table,
socket4,
socket6,
device,
next_peerlist: now,
update_freq,
stats_file,
buffer_out: [0; 64 * 1024],
next_housekeep: now,
next_stats_out: now + STATS_INTERVAL,
next_beacon: now,
port_forwarding,
traffic: TrafficStats::default(),
beacon_serializer: BeaconSerializer::new(&config.get_magic(), crypto.get_key()),
crypto,
config: config.clone(),
_dummy_p: PhantomData,
_dummy_ts: PhantomData
};
res.initialize();
res
}
#[inline]
pub fn ifname(&self) -> &str {
self.device.ifname()
}
/// Sends the message to all peers
///
/// # Errors
/// Returns an `Error::SocketError` when the underlying system call fails or only part of the
/// message could be sent (can this even happen?).
/// Some messages could have been sent.
#[inline]
fn broadcast_msg(&mut self, msg: &mut Message) -> Result<(), Error> {
debug!("Broadcasting {:?}", msg);
// Encrypt and encode once and send several times
let msg_data = encode(msg, &mut self.buffer_out, self.magic, &mut self.crypto);
for addr in self.peers.peers.keys() {
self.traffic.count_out_traffic(*addr, msg_data.len());
let socket = match *addr {
SocketAddr::V4(_) => &mut self.socket4,
SocketAddr::V6(_) => &mut self.socket6
};
match socket.send(msg_data, *addr) {
Ok(written) if written == msg_data.len() => Ok(()),
Ok(_) => {
Err(Error::Socket("Sent out truncated packet", io::Error::new(io::ErrorKind::Other, "truncated")))
}
Err(e) => Err(Error::Socket("IOError when sending", e))
}?
}
Ok(())
}
/// Sends a message to one peer
///
/// # Errors
/// Returns an `Error::SocketError` when the underlying system call fails or only part of the
/// message could be sent (can this even happen?).
#[inline]
fn send_msg(&mut self, addr: SocketAddr, msg: &mut Message) -> Result<(), Error> {
debug!("Sending {:?} to {}", msg, addr);
// Encrypt and encode
let msg_data = encode(msg, &mut self.buffer_out, self.magic, &mut self.crypto);
self.traffic.count_out_traffic(addr, msg_data.len());
let socket = match addr {
SocketAddr::V4(_) => &mut self.socket4,
SocketAddr::V6(_) => &mut self.socket6
};
match socket.send(msg_data, addr) {
Ok(written) if written == msg_data.len() => Ok(()),
Ok(_) => Err(Error::Socket("Sent out truncated packet", io::Error::new(io::ErrorKind::Other, "truncated"))),
Err(e) => Err(Error::Socket("IOError when sending", e))
}
}
/// Returns the self-perceived addresses (IPv4 and IPv6) of this node
///
/// Note that those addresses could be private addresses that are not reachable by other nodes,
/// or only some other nodes inside the same network.
///
/// # Errors
/// Returns an IOError if the underlying system call fails
#[allow(dead_code)]
pub fn address(&self) -> io::Result<(SocketAddr, SocketAddr)> {
Ok((self.socket4.address()?, self.socket6.address()?))
}
/// Returns the number of peers
#[allow(dead_code)]
pub fn peer_count(&self) -> usize {
self.peers.len()
}
/// Adds a peer to the reconnect list
///
/// This method adds a peer to the list of nodes to reconnect to. A periodic task will try to
/// connect to the peer if it is not already connected.
pub fn add_reconnect_peer(&mut self, add: String) {
let now = TS::now();
let resolved = match resolve(&add as &str) {
Ok(addrs) => addrs,
Err(err) => {
warn!("Failed to resolve {}: {:?}", add, err);
vec![]
}
};
self.reconnect_peers.push(ReconnectEntry {
address: add,
tries: 0,
timeout: 1,
resolved,
next_resolve: now,
next: now
})
}
/// Returns whether the address is of this node
///
/// # Errors
/// Returns an `Error::SocketError` if the given address is a name that failed to resolve to
/// actual addresses.
fn is_own_address<Addr: ToSocketAddrs + fmt::Debug>(&self, addr: Addr) -> Result<bool, Error> {
for addr in resolve(&addr)? {
if self.own_addresses.contains(&addr) {
return Ok(true)
}
}
Ok(false)
}
/// Connects to a node given by its address
///
/// This method connects to node by sending a `Message::Init` to it. If `addr` is a name that
/// resolves to multiple addresses, one message is sent to each of them.
/// If the node is already a connected peer or the address is blacklisted, no message is sent.
///
/// # Errors
/// This method returns `Error::NameError` if the address is a name that fails to resolve.
pub fn connect<Addr: ToSocketAddrs + fmt::Debug + Clone>(&mut self, addr: Addr) -> Result<(), Error> {
if self.peers.is_connected(addr.clone())? || self.is_own_address(addr.clone())? {
return Ok(())
}
debug!("Connecting to {:?}", addr);
let subnets = self.addresses.clone();
let node_id = self.node_id;
// Send a message to each resolved address
for a in resolve(&addr)? {
// Ignore error this time
let mut msg = Message::Init(0, node_id, subnets.clone(), self.peer_timeout_publish);
self.send_msg(a, &mut msg).ok();
}
Ok(())
}
/// Connects to a node given by its address
///
/// This method connects to node by sending a `Message::Init` to it. If `addr` is a name that
/// resolves to multiple addresses, one message is sent to each of them.
/// If the node is already a connected peer or the address is blacklisted, no message is sent.
///
/// # Errors
/// This method returns `Error::NameError` if the address is a name that fails to resolve.
fn connect_sock(&mut self, addr: SocketAddr) -> Result<(), Error> {
if self.peers.contains_addr(&addr) || self.own_addresses.contains(&addr) {
return Ok(())
}
debug!("Connecting to {:?}", addr);
let subnets = self.addresses.clone();
let node_id = self.node_id;
let mut msg = Message::Init(0, node_id, subnets, self.peer_timeout_publish);
self.send_msg(addr, &mut msg)
}
/// Run all periodic housekeeping tasks
///
/// This method executes several tasks:
/// - Remove peers that have timed out
/// - Remove switch table entries that have timed out
/// - Periodically send the peers list to all peers
/// - Periodically reconnect to peers in the reconnect list
///
/// # Errors
/// This method returns errors if sending a message fails or resolving an address fails.
fn housekeep(&mut self) -> Result<(), Error> {
for peer in self.peers.timeout() {
self.table.remove_all(&peer);
}
self.table.housekeep();
// Periodically extend the port-forwarding
if let Some(ref mut pfw) = self.port_forwarding {
pfw.check_extend();
}
// Periodically send peer list to peers
let now = TS::now();
if self.next_peerlist <= now {
debug!("Send peer list to all peers");
let mut peer_num = self.peers.len();
// If the number of peers is high, send only a fraction of the full peer list to
// reduce the management traffic. The number of peers to send is limited by 20.
peer_num = min(peer_num, 20);
// Select that many peers...
let peers = self.peers.subset(peer_num);
// ...and send them to all peers
let mut msg = Message::Peers(peers);
self.broadcast_msg(&mut msg)?;
// Reschedule for next update
let interval = min(self.update_freq as u16, self.peers.min_peer_timeout());
self.next_peerlist = now + Time::from(interval);
}
// Connect to those reconnect_peers that are due
for entry in self.reconnect_peers.clone() {
if entry.next > now {
continue
}
self.connect(&entry.resolved as &[SocketAddr])?;
}
for entry in &mut self.reconnect_peers {
// Schedule for next second if node is connected
if self.peers.is_connected(&entry.resolved as &[SocketAddr])? {
entry.tries = 0;
entry.timeout = 1;
entry.next = now + 1;
continue
}
// Resolve entries anew
if entry.next_resolve <= now {
if let Ok(addrs) = resolve(&entry.address as &str) {
entry.resolved = addrs;
}
entry.next_resolve = now + RESOLVE_INTERVAL;
}
// Ignore if next attempt is already in the future
if entry.next > now {
continue
}
// Exponential backoff: every 10 tries, the interval doubles
entry.tries += 1;
if entry.tries > 10 {
entry.tries = 0;
entry.timeout *= 2;
}
// Maximum interval is one hour
if entry.timeout > MAX_RECONNECT_INTERVAL {
entry.timeout = MAX_RECONNECT_INTERVAL;
}
// Schedule next connection attempt
entry.next = now + Time::from(entry.timeout);
}
if self.next_stats_out < now {
// Write out the statistics
self.write_out_stats().map_err(|err| Error::File("Failed to write stats file", err))?;
self.next_stats_out = now + STATS_INTERVAL;
self.traffic.period(Some(5));
}
if let Some(peers) = self.beacon_serializer.get_cmd_results() {
debug!("Loaded beacon with peers: {:?}", peers);
for peer in peers {
self.connect_sock(peer)?;
}
}
if self.next_beacon < now {
self.store_beacon()?;
self.load_beacon()?;
self.next_beacon = now + Time::from(self.config.beacon_interval);
}
Ok(())
}
/// Stores the beacon
fn store_beacon(&mut self) -> Result<(), Error> {
if let Some(ref path) = self.config.beacon_store {
let peers: Vec<_> = self.own_addresses.choose_multiple(&mut thread_rng(), 3).cloned().collect();
if path.starts_with('|') {
self.beacon_serializer
.write_to_cmd(&peers, &path[1..])
.map_err(|e| Error::Beacon("Failed to call beacon command", e))?;
} else {
self.beacon_serializer
.write_to_file(&peers, &path)
.map_err(|e| Error::Beacon("Failed to write beacon to file", e))?;
}
}
Ok(())
}
/// Loads the beacon
fn load_beacon(&mut self) -> Result<(), Error> {
let peers;
if let Some(ref path) = self.config.beacon_load {
if path.starts_with('|') {
self.beacon_serializer
.read_from_cmd(&path[1..], Some(50))
.map_err(|e| Error::Beacon("Failed to call beacon command", e))?;
return Ok(())
} else {
peers = self
.beacon_serializer
.read_from_file(&path, Some(50))
.map_err(|e| Error::Beacon("Failed to read beacon from file", e))?;
}
} else {
return Ok(())
}
debug!("Loaded beacon with peers: {:?}", peers);
for peer in peers {
self.connect_sock(peer)?;
}
Ok(())
}
/// Calculates, resets and writes out the statistics to a file
fn write_out_stats(&mut self) -> Result<(), io::Error> {
if let Some(ref mut f) = self.stats_file {
debug!("Writing out stats");
f.set_len(0)?;
self.peers.write_out(f)?;
writeln!(f)?;
self.table.write_out(f)?;
writeln!(f)?;
self.traffic.write_out(f)?;
writeln!(f)?;
}
Ok(())
}
/// Handles payload data coming in from the local network device
///
/// This method takes payload data received from the local device and parses it to obtain the
/// destination address. Then it checks the lookup table to get the peer for that destination
/// address. If a peer is found, the message is sent to it, otherwise the message is either
/// broadcast to all peers or dropped (depending on mode).
///
/// The parameter `payload` contains the payload data starting at position `start` and ending
/// at `end`. It is important that the buffer has enough space before the payload data to
/// prepend a header of max 64 bytes and enough space after the payload data to append a mac of
/// max 64 bytes.
///
/// # Errors
/// This method fails
/// - with `Error::ParseError` if the payload data failed to parse
/// - with `Error::SocketError` if sending a message fails
pub fn handle_interface_data(&mut self, payload: &mut [u8], start: usize, end: usize) -> Result<(), Error> {
let (src, dst) = P::parse(&payload[start..end])?;
debug!("Read data from interface: src: {}, dst: {}, {} bytes", src, dst, end - start);
self.traffic.count_out_payload(dst, src, end - start);
match self.table.lookup(&dst) {
Some(addr) => {
// Peer found for destination
debug!("Found destination for {} => {}", dst, addr);
self.send_msg(addr, &mut Message::Data(payload, start, end))?;
if !self.peers.contains_addr(&addr) {
// If the peer is not actually connected, remove the entry in the table and try
// to reconnect.
warn!("Destination for {} not found in peers: {}", dst, addr);
self.table.remove(&dst);
self.connect_sock(addr)?;
}
}
None => {
if self.broadcast {
debug!("No destination for {} found, broadcasting", dst);
let mut msg = Message::Data(payload, start, end);
self.broadcast_msg(&mut msg)?;
} else {
debug!("No destination for {} found, dropping", dst);
}
}
}
Ok(())
}
/// Handles a message received from the network
///
/// This method handles messages from the network, i.e. from peers. `peer` contains the sender
/// of the message and `msg` contains the message.
///
/// Then this method will check the message type and will handle each message type differently.
///
/// # `Message::Data` messages
/// This message type contains payload data and therefore this path is optimized for speed.
///
/// The payload of data messages is written to the local network device and if the node is in
/// a learning mode it will associate the sender peer with the source address.
///
/// # `Message::Peers` messages
/// If this message is received, the local node will use all the node addresses in the message
/// as well as the senders address to connect to.
///
/// # `Message::Init` messages
/// This message is used in the peer connection handshake.
///
/// To make sure, the node does not connect to itself, it will compare the remote `node_id` to
/// the local one. If the id is the same, it will ignore the message and blacklist the address
/// so that it won't be used in the future.
///
/// If the message is coming from a different node, the nodes address is added to the peer list
/// and its claimed addresses are associated with it.
///
/// If the `stage` of the message is 1, a `Message::Init` message with `stage=1` is sent in
/// reply, together with a peer list.
///
/// # `Message::Close` message
/// If this message is received, the sender is removed from the peer list and its claimed
/// addresses are removed from the table.
pub fn handle_net_message(&mut self, peer: SocketAddr, msg: Message) -> Result<(), Error> {
debug!("Received {:?} from {}", msg, peer);
match msg {
Message::Data(payload, start, end) => {
let (src, dst) = P::parse(&payload[start..end])?;
debug!("Writing data to device: {} bytes", end - start);
self.traffic.count_in_payload(src, dst, end - start);
if let Err(e) = self.device.write(&mut payload[..end], start) {
error!("Failed to send via device: {}", e);
return Err(e)
}
if self.learning {
// Learn single address
self.table.learn(src, None, peer);
}
// Not adding peer in this case to increase performance
}
Message::Peers(peers) => {
// Connect to sender if not connected
if !self.peers.contains_addr(&peer) {
self.connect_sock(peer)?;
}
if let Some(node_id) = self.peers.get_node_id(&peer) {
self.peers.make_primary(node_id, peer);
}
// Connect to all peers in the message
for p in &peers {
self.connect_sock(*p)?;
}
// Refresh peer
self.peers.refresh(&peer);
}
Message::Init(stage, node_id, ranges, peer_timeout) => {
// Avoid connecting to self
if node_id == self.node_id {
self.own_addresses.push(peer);
return Ok(())
}
// Add sender as peer or as alternative address to existing peer
if self.peers.contains_node(&node_id) {
self.peers.make_primary(node_id, peer);
} else {
self.peers.add(node_id, peer, peer_timeout);
for range in ranges {
self.table.learn(range.base, Some(range.prefix_len), peer);
}
}
// Reply with stage=1 if stage is 0
if stage == 0 {
let own_addrs = self.addresses.clone();
let own_node_id = self.node_id;
self.send_msg(
peer,
&mut Message::Init(stage + 1, own_node_id, own_addrs, self.peer_timeout_publish)
)?;
}
// Send peers in any case
let peers = self.peers.as_vec();
self.send_msg(peer, &mut Message::Peers(peers))?;
}
Message::Close => {
self.peers.remove(&peer);
self.table.remove_all(&peer);
}
}
Ok(())
}
fn initialize(&mut self) {
match self.address() {
Err(err) => error!("Failed to obtain local addresses: {}", err),
Ok((v4, v6)) => {
self.own_addresses.push(v4);
self.own_addresses.push(v6);
}
}
}
fn handle_socket_data(&mut self, src: SocketAddr, data: &mut [u8]) {
let size = data.len();
if let Err(e) = decode(data, self.magic, &self.crypto).and_then(|msg| {
self.traffic.count_in_traffic(src, size);
self.handle_net_message(src, msg)
}) {
error!("Error: {}, from: {}", e, src);
}
}
fn handle_socket_v4_event(&mut self, buffer: &mut [u8]) {
let (size, src) = try_fail!(self.socket4.receive(buffer), "Failed to read from ipv4 network socket: {}");
self.handle_socket_data(src, &mut buffer[..size])
}
fn handle_socket_v6_event(&mut self, buffer: &mut [u8]) {
let (size, src) = try_fail!(self.socket6.receive(buffer), "Failed to read from ipv6 network socket: {}");
self.handle_socket_data(src, &mut buffer[..size])
}
fn handle_device_event(&mut self, buffer: &mut [u8]) {
let mut start = 64;
let (offset, size) = try_fail!(self.device.read(&mut buffer[start..]), "Failed to read from tap device: {}");
start += offset;
if let Err(e) = self.handle_interface_data(buffer, start, start + size) {
error!("Error: {}", e);
}
}
/// The main method of the node
///
/// This method will use epoll to wait in the sockets and the device at the same time.
/// It will read from the sockets, decode and decrypt the message and then call the
/// `handle_net_message` method. It will also read from the device and call
/// `handle_interface_data` for each packet read.
/// Also, this method will call `housekeep` every second.
pub fn run(&mut self) {
let ctrlc = CtrlC::new();
let waiter =
try_fail!(WaitImpl::new(&self.socket4, &self.socket6, &self.device, 1000), "Failed to setup poll: {}");
let mut buffer = [0; 64 * 1024];
let mut poll_error = false;
for evt in waiter {
match evt {
WaitResult::Error(err) => {
if poll_error {
fail!("Poll wait failed again: {}", err);
}
error!("Poll wait failed: {}, retrying...", err);
poll_error = true;
}
WaitResult::Timeout => {}
WaitResult::SocketV4 => self.handle_socket_v4_event(&mut buffer),
WaitResult::SocketV6 => self.handle_socket_v6_event(&mut buffer),
WaitResult::Device => self.handle_device_event(&mut buffer)
}
if self.next_housekeep < TS::now() {
poll_error = false;
if ctrlc.was_pressed() {
break
}
if let Err(e) = self.housekeep() {
error!("Error: {}", e)
}
self.next_housekeep = TS::now() + 1
}
}
info!("Shutting down...");
self.broadcast_msg(&mut Message::Close).ok();
if let Some(ref path) = self.config.beacon_store {
let path = Path::new(path);
if path.exists() {
info!("Removing beacon file");
if let Err(e) = fs::remove_file(path) {
error!("Failed to remove beacon file: {}", e)
}
}
}
}
}
#[cfg(test)] use super::device::MockDevice;
#[cfg(test)] use super::net::MockSocket;
#[cfg(test)] use super::util::MockTimeSource;
#[cfg(test)]
impl<P: Protocol, T: Table> GenericCloud<MockDevice, P, T, MockSocket, MockTimeSource> {
pub fn socket4(&mut self) -> &mut MockSocket {
&mut self.socket4
}
pub fn socket6(&mut self) -> &mut MockSocket {
&mut self.socket6
}
pub fn device(&mut self) -> &mut MockDevice {
&mut self.device
}
pub fn trigger_socket_v4_event(&mut self) {
let mut buffer = [0; 64 * 1024];
self.handle_socket_v4_event(&mut buffer);
}
pub fn trigger_socket_v6_event(&mut self) {
let mut buffer = [0; 64 * 1024];
self.handle_socket_v6_event(&mut buffer);
}
pub fn trigger_device_event(&mut self) {
let mut buffer = [0; 64 * 1024];
self.handle_device_event(&mut buffer);
}
pub fn trigger_housekeep(&mut self) {
assert!(self.housekeep().is_ok())
}
pub fn node_id(&self) -> NodeId {
self.node_id
}
pub fn peers(&self) -> &PeerList<MockTimeSource> {
&self.peers
}
pub fn own_addresses(&self) -> &[SocketAddr] {
&self.own_addresses
}
pub fn decode_message<'a>(&self, msg: &'a mut [u8]) -> Result<Message<'a>, Error> {
decode(msg, self.magic, &self.crypto)
}
}