This commit is contained in:
Dennis Schwerdel 2021-01-13 09:20:05 +01:00
parent a86aecfa7e
commit 48927b2f48
3 changed files with 79 additions and 162 deletions

View File

@ -53,7 +53,9 @@
use super::{ use super::{
core::{CryptoCore, EXTRA_LEN}, core::{CryptoCore, EXTRA_LEN},
Algorithms, EcdhPrivateKey, EcdhPublicKey, Ed25519PublicKey, Error, MsgBuffer, Payload rotate::RotationState,
Algorithms, EcdhPrivateKey, EcdhPublicKey, Ed25519PublicKey, Error, MsgBuffer, Payload, PeerCrypto,
MESSAGE_TYPE_ROTATION
}; };
use crate::types::NodeId; use crate::types::NodeId;
use byteorder::{NetworkEndian, ReadBytesExt, WriteBytesExt}; use byteorder::{NetworkEndian, ReadBytesExt, WriteBytesExt};
@ -72,6 +74,7 @@ use std::{
sync::Arc sync::Arc
}; };
pub const INIT_MESSAGE_FIRST_BYTE: u8 = 0xff;
pub const STAGE_PING: u8 = 1; pub const STAGE_PING: u8 = 1;
pub const STAGE_PONG: u8 = 2; pub const STAGE_PONG: u8 = 2;
@ -85,6 +88,11 @@ pub const SALTED_NODE_ID_HASH_LEN: usize = 20;
pub type SaltedNodeIdHash = [u8; SALTED_NODE_ID_HASH_LEN]; pub type SaltedNodeIdHash = [u8; SALTED_NODE_ID_HASH_LEN];
pub fn is_init_message(msg: &[u8]) -> bool {
!msg.is_empty() && msg[0] == INIT_MESSAGE_FIRST_BYTE
}
#[allow(clippy::large_enum_variant)] #[allow(clippy::large_enum_variant)]
pub enum InitMsg { pub enum InitMsg {
Ping { Ping {
@ -141,6 +149,9 @@ impl InitMsg {
fn read_from(buffer: &[u8], trusted_keys: &[Ed25519PublicKey]) -> Result<(Self, Ed25519PublicKey), Error> { fn read_from(buffer: &[u8], trusted_keys: &[Ed25519PublicKey]) -> Result<(Self, Ed25519PublicKey), Error> {
let mut r = Cursor::new(buffer); let mut r = Cursor::new(buffer);
if r.read_u8().map_err(|_| Error::Parse("Init message too short"))? != INIT_MESSAGE_FIRST_BYTE {
return Err(Error::Parse("Init message has invalid first byte"))
}
let mut public_key_salt = [0; 4]; let mut public_key_salt = [0; 4];
r.read_exact(&mut public_key_salt).map_err(|_| Error::Parse("Init message too short"))?; r.read_exact(&mut public_key_salt).map_err(|_| Error::Parse("Init message too short"))?;
let mut public_key_hash = [0; 4]; let mut public_key_hash = [0; 4];
@ -290,6 +301,7 @@ impl InitMsg {
fn write_to(&self, buffer: &mut [u8], key: &Ed25519KeyPair) -> Result<usize, io::Error> { fn write_to(&self, buffer: &mut [u8], key: &Ed25519KeyPair) -> Result<usize, io::Error> {
let mut w = Cursor::new(buffer); let mut w = Cursor::new(buffer);
w.write_u8(INIT_MESSAGE_FIRST_BYTE)?;
let rand = SystemRandom::new(); let rand = SystemRandom::new();
let mut salt = [0; 4]; let mut salt = [0; 4];
rand.fill(&mut salt).unwrap(); rand.fill(&mut salt).unwrap();
@ -378,9 +390,9 @@ pub enum InitResult<P: Payload> {
Success { peer_payload: P, is_initiator: bool } Success { peer_payload: P, is_initiator: bool }
} }
pub struct InitState<P: Payload> { pub struct InitState<P: Payload> {
node_id: NodeId, node_id: NodeId,
is_initiator: bool,
salted_node_id_hash: SaltedNodeIdHash, salted_node_id_hash: SaltedNodeIdHash,
payload: P, payload: P,
key_pair: Arc<Ed25519KeyPair>, key_pair: Arc<Ed25519KeyPair>,
@ -389,7 +401,7 @@ pub struct InitState<P: Payload> {
next_stage: u8, next_stage: u8,
close_time: usize, close_time: usize,
last_message: Option<Vec<u8>>, last_message: Option<Vec<u8>>,
crypto: Option<CryptoCore>, crypto: Option<Arc<CryptoCore>>,
algorithms: Algorithms, algorithms: Algorithms,
selected_algorithm: Option<&'static Algorithm>, selected_algorithm: Option<&'static Algorithm>,
failed_retries: usize failed_retries: usize
@ -409,6 +421,7 @@ impl<P: Payload> InitState<P> {
hash[4..].clone_from_slice(&d.as_ref()[..16]); hash[4..].clone_from_slice(&d.as_ref()[..16]);
Self { Self {
node_id, node_id,
is_initiator: false,
salted_node_id_hash: hash, salted_node_id_hash: hash,
payload, payload,
key_pair, key_pair,
@ -431,7 +444,7 @@ impl<P: Payload> InitState<P> {
// create stage 1 msg // create stage 1 msg
self.send_message(STAGE_PING, Some(ecdh_public_key), out); self.send_message(STAGE_PING, Some(ecdh_public_key), out);
self.is_initiator = true;
self.next_stage = STAGE_PONG; self.next_stage = STAGE_PONG;
} }
@ -588,6 +601,7 @@ impl<P: Payload> InitState<P> {
// the node with the higher node_id "wins" and gets to initialize the connection // the node with the higher node_id "wins" and gets to initialize the connection
if salted_node_id_hash > self.salted_node_id_hash { if salted_node_id_hash > self.salted_node_id_hash {
// reset to initial state // reset to initial state
self.is_initiator = false;
self.next_stage = STAGE_PING; self.next_stage = STAGE_PING;
self.last_message = None; self.last_message = None;
self.ecdh_private_key = None; self.ecdh_private_key = None;
@ -614,7 +628,8 @@ impl<P: Payload> InitState<P> {
self.selected_algorithm = algorithm.map(|a| a.0); self.selected_algorithm = algorithm.map(|a| a.0);
if let Some((algorithm, _speed)) = algorithm { if let Some((algorithm, _speed)) = algorithm {
let master_key = self.derive_master_key(algorithm, my_ecdh_private_key, &ecdh_public_key); let master_key = self.derive_master_key(algorithm, my_ecdh_private_key, &ecdh_public_key);
self.crypto = Some(CryptoCore::new(master_key, self.salted_node_id_hash > salted_node_id_hash)); self.crypto =
Some(Arc::new(CryptoCore::new(master_key, self.salted_node_id_hash > salted_node_id_hash)));
} }
// create and send stage 2 reply // create and send stage 2 reply
@ -630,7 +645,8 @@ impl<P: Payload> InitState<P> {
self.selected_algorithm = algorithm.map(|a| a.0); self.selected_algorithm = algorithm.map(|a| a.0);
if let Some((algorithm, _speed)) = algorithm { if let Some((algorithm, _speed)) = algorithm {
let master_key = self.derive_master_key(algorithm, ecdh_private_key, &ecdh_public_key); let master_key = self.derive_master_key(algorithm, ecdh_private_key, &ecdh_public_key);
self.crypto = Some(CryptoCore::new(master_key, self.salted_node_id_hash > salted_node_id_hash)); self.crypto =
Some(Arc::new(CryptoCore::new(master_key, self.salted_node_id_hash > salted_node_id_hash)));
} }
// decrypt the payload // decrypt the payload
@ -657,8 +673,19 @@ impl<P: Payload> InitState<P> {
} }
} }
pub fn take_core(&mut self) -> Option<CryptoCore> { pub fn finish(self, buffer: &mut MsgBuffer) -> PeerCrypto {
self.crypto.take() assert!(buffer.is_empty());
let rotation = if self.crypto.is_some() { Some(RotationState::new(!self.is_initiator, buffer)) } else { None };
if !buffer.is_empty() {
buffer.prepend_byte(MESSAGE_TYPE_ROTATION);
}
PeerCrypto {
algorithm: self.crypto.map(|c| c.algorithm()),
core: self.crypto,
rotation,
rotate_counter: 0,
last_init_message: self.last_message
}
} }
} }

View File

@ -2,11 +2,10 @@ mod core;
mod init; mod init;
mod rotate; mod rotate;
pub use self::core::{EXTRA_LEN, TAG_LEN, CryptoCore}; use self::{core::test_speed, init::InitState, rotate::RotationState};
use self::{ pub use self::{
core::{test_speed, CryptoCore}, core::{CryptoCore, EXTRA_LEN, TAG_LEN},
init::{InitResult, InitState, CLOSING}, init::{is_init_message, INIT_MESSAGE_FIRST_BYTE}
rotate::RotationState
}; };
use crate::{ use crate::{
error::Error, error::Error,
@ -26,7 +25,7 @@ use thiserror::Error;
const SALT: &[u8; 32] = b"vpncloudVPNCLOUDvpncl0udVpnCloud"; const SALT: &[u8; 32] = b"vpncloudVPNCLOUDvpncl0udVpnCloud";
const INIT_MESSAGE_FIRST_BYTE: u8 = 0xff;
const MESSAGE_TYPE_ROTATION: u8 = 0x10; const MESSAGE_TYPE_ROTATION: u8 = 0x10;
pub type Ed25519PublicKey = [u8; ED25519_PUBLIC_KEY_LEN]; pub type Ed25519PublicKey = [u8; ED25519_PUBLIC_KEY_LEN];
@ -186,100 +185,35 @@ impl Crypto {
Ok(result) Ok(result)
} }
pub fn peer_instance<P: Payload>(&self, payload: P) -> PeerCrypto<P> { pub fn peer_instance<P: Payload>(&self, payload: P) -> InitState<P> {
PeerCrypto::new( InitState::new(self.node_id, payload, self.key_pair.clone(), self.trusted_keys.clone(), self.algorithms.clone())
self.node_id,
payload,
self.key_pair.clone(),
self.trusted_keys.clone(),
self.algorithms.clone()
)
} }
} }
#[derive(Debug, PartialEq)] #[derive(Debug, PartialEq)]
pub enum MessageResult<P: Payload> { pub enum MessageResult {
Message(u8), Message(u8),
Initialized(P),
InitializedWithReply(P),
Reply, Reply,
None None
} }
pub struct PeerCrypto<P: Payload> { // TODO: completely rewrite
// PeerCrypto is only for initialized crypto
// Init is consumed and generates PeerCrypto
pub struct PeerCrypto {
#[allow(dead_code)] #[allow(dead_code)]
node_id: NodeId, last_init_message: Option<Vec<u8>>,
init: Option<InitState<P>>, algorithm: Option<&'static Algorithm>,
rotation: Option<RotationState>, rotation: Option<RotationState>,
unencrypted: bool, core: Option<Arc<CryptoCore>>,
core: Option<CryptoCore>,
rotate_counter: usize rotate_counter: usize
} }
impl<P: Payload> PeerCrypto<P> { impl PeerCrypto {
pub fn new(
node_id: NodeId, init_payload: P, key_pair: Arc<Ed25519KeyPair>, trusted_keys: Arc<[Ed25519PublicKey]>,
algorithms: Algorithms
) -> Self
{
Self {
node_id,
init: Some(InitState::new(node_id, init_payload, key_pair, trusted_keys, algorithms)),
rotation: None,
unencrypted: false,
core: None,
rotate_counter: 0
}
}
fn get_init(&mut self) -> Result<&mut InitState<P>, Error> {
if let Some(init) = &mut self.init {
Ok(init)
} else {
Err(Error::InvalidCryptoState("Initialization already finished"))
}
}
fn get_core(&mut self) -> Result<&mut CryptoCore, Error> {
if let Some(core) = &mut self.core {
Ok(core)
} else {
Err(Error::InvalidCryptoState("Crypto core not ready yet"))
}
}
fn get_rotation(&mut self) -> Result<&mut RotationState, Error> {
if let Some(rotation) = &mut self.rotation {
Ok(rotation)
} else {
Err(Error::InvalidCryptoState("Key rotation not initialized"))
}
}
pub fn initialize(&mut self, out: &mut MsgBuffer) -> Result<(), Error> {
let init = self.get_init()?;
if init.stage() != init::STAGE_PING {
Err(Error::InvalidCryptoState("Initialization already ongoing"))
} else {
init.send_ping(out);
out.prepend_byte(INIT_MESSAGE_FIRST_BYTE);
Ok(())
}
}
pub fn has_init(&self) -> bool {
self.init.is_some()
}
pub fn is_ready(&self) -> bool {
self.core.is_some()
}
pub fn algorithm_name(&self) -> &'static str { pub fn algorithm_name(&self) -> &'static str {
if let Some(ref core) = self.core { if let Some(algo) = self.algorithm {
let algo = core.algorithm();
if algo == &aead::CHACHA20_POLY1305 { if algo == &aead::CHACHA20_POLY1305 {
"CHACHA20" "CHACHA20"
} else if algo == &aead::AES_128_GCM { } else if algo == &aead::AES_128_GCM {
@ -294,72 +228,43 @@ impl<P: Payload> PeerCrypto<P> {
} }
} }
fn handle_init_message(&mut self, buffer: &mut MsgBuffer) -> Result<MessageResult<P>, Error> { fn handle_init_message(&mut self, buffer: &mut MsgBuffer) -> Result<MessageResult, Error> {
let result = self.get_init()?.handle_init(buffer)?; // TODO: parse message stage
if !buffer.is_empty() { // TODO: depending on stage resend last message
buffer.prepend_byte(INIT_MESSAGE_FIRST_BYTE); Ok(MessageResult::None)
}
match result {
InitResult::Continue => Ok(MessageResult::Reply),
InitResult::Success { peer_payload, is_initiator } => {
self.core = self.get_init()?.take_core();
if self.core.is_none() {
self.unencrypted = true;
}
if self.get_init()?.stage() == init::CLOSING {
self.init = None
}
if self.core.is_some() {
self.rotation = Some(RotationState::new(!is_initiator, buffer));
}
if !is_initiator {
if self.unencrypted {
return Ok(MessageResult::Initialized(peer_payload))
}
assert!(!buffer.is_empty());
buffer.prepend_byte(MESSAGE_TYPE_ROTATION);
self.encrypt_message(buffer)?;
}
Ok(MessageResult::InitializedWithReply(peer_payload))
}
}
} }
fn handle_rotate_message(&mut self, data: &[u8]) -> Result<(), Error> { fn handle_rotate_message(&mut self, data: &[u8]) -> Result<(), Error> {
if self.unencrypted { if let Some(rotation) = &mut self.rotation {
return Ok(()) if let Some(rot) = rotation.handle_message(data)? {
} let algo = self.algorithm.unwrap();
if let Some(rot) = self.get_rotation()?.handle_message(data)? {
let core = self.get_core()?;
let algo = core.algorithm();
let key = LessSafeKey::new(UnboundKey::new(algo, &rot.key[..algo.key_len()]).unwrap()); let key = LessSafeKey::new(UnboundKey::new(algo, &rot.key[..algo.key_len()]).unwrap());
core.rotate_key(key, rot.id, rot.use_for_sending); self.core.unwrap().rotate_key(key, rot.id, rot.use_for_sending);
}
} }
Ok(()) Ok(())
} }
fn encrypt_message(&mut self, buffer: &mut MsgBuffer) -> Result<(), Error> { fn encrypt_message(&mut self, buffer: &mut MsgBuffer) {
if self.unencrypted { if let Some(core) = &mut self.core {
return Ok(()) core.encrypt(buffer)
} }
self.get_core()?.encrypt(buffer);
Ok(())
} }
fn decrypt_message(&mut self, buffer: &mut MsgBuffer) -> Result<(), Error> { fn decrypt_message(&mut self, buffer: &mut MsgBuffer) -> Result<(), Error> {
if self.unencrypted { if let Some(core) = &mut self.core {
return Ok(()) core.decrypt(buffer)
} else {
Ok(())
} }
self.get_core()?.decrypt(buffer)
} }
pub fn handle_message(&mut self, buffer: &mut MsgBuffer) -> Result<MessageResult<P>, Error> { pub fn handle_message(&mut self, buffer: &mut MsgBuffer) -> Result<MessageResult, Error> {
if buffer.is_empty() { if buffer.is_empty() {
return Err(Error::InvalidCryptoState("No message in buffer")) return Err(Error::InvalidCryptoState("No message in buffer"))
} }
if is_init_message(buffer.buffer()) { if is_init_message(buffer.buffer()) {
debug!("Received init message"); debug!("Received init message");
buffer.take_prefix();
self.handle_init_message(buffer) self.handle_init_message(buffer)
} else { } else {
debug!("Received encrypted message"); debug!("Received encrypted message");
@ -376,52 +281,37 @@ impl<P: Payload> PeerCrypto<P> {
} }
} }
pub fn send_message(&mut self, type_: u8, buffer: &mut MsgBuffer) -> Result<(), Error> { pub fn send_message(&mut self, type_: u8, buffer: &mut MsgBuffer) {
assert_ne!(type_, MESSAGE_TYPE_ROTATION); assert_ne!(type_, MESSAGE_TYPE_ROTATION);
buffer.prepend_byte(type_); buffer.prepend_byte(type_);
self.encrypt_message(buffer) self.encrypt_message(buffer);
} }
pub fn every_second(&mut self, out: &mut MsgBuffer) -> Result<MessageResult<P>, Error> { pub fn every_second(&mut self, out: &mut MsgBuffer) -> MessageResult {
out.clear(); out.clear();
if let Some(ref mut core) = self.core { if let Some(ref mut core) = self.core {
core.every_second() core.every_second()
} }
if let Some(ref mut init) = self.init {
init.every_second(out)?;
}
if self.init.as_ref().map(|i| i.stage()).unwrap_or(CLOSING) == CLOSING {
self.init = None
}
if !out.is_empty() {
out.prepend_byte(INIT_MESSAGE_FIRST_BYTE);
return Ok(MessageResult::Reply)
}
if let Some(ref mut rotate) = self.rotation { if let Some(ref mut rotate) = self.rotation {
self.rotate_counter += 1; self.rotate_counter += 1;
if self.rotate_counter >= ROTATE_INTERVAL { if self.rotate_counter >= ROTATE_INTERVAL {
self.rotate_counter = 0; self.rotate_counter = 0;
if let Some(rot) = rotate.cycle(out) { if let Some(rot) = rotate.cycle(out) {
let core = self.get_core()?; let algo = self.algorithm.unwrap();
let algo = core.algorithm();
let key = LessSafeKey::new(UnboundKey::new(algo, &rot.key[..algo.key_len()]).unwrap()); let key = LessSafeKey::new(UnboundKey::new(algo, &rot.key[..algo.key_len()]).unwrap());
core.rotate_key(key, rot.id, rot.use_for_sending); self.core.unwrap().rotate_key(key, rot.id, rot.use_for_sending);
} }
if !out.is_empty() { if !out.is_empty() {
out.prepend_byte(MESSAGE_TYPE_ROTATION); out.prepend_byte(MESSAGE_TYPE_ROTATION);
self.encrypt_message(out)?; self.encrypt_message(out);
return Ok(MessageResult::Reply) return MessageResult::Reply
} }
} }
} }
Ok(MessageResult::None) MessageResult::None
} }
} }
pub fn is_init_message(msg: &[u8]) -> bool {
!msg.is_empty() && msg[0] == INIT_MESSAGE_FIRST_BYTE
}
#[cfg(test)] #[cfg(test)]
mod tests { mod tests {

View File

@ -12,7 +12,7 @@ use parking_lot::Mutex;
use std::{collections::HashMap, net::SocketAddr, sync::Arc}; use std::{collections::HashMap, net::SocketAddr, sync::Arc};
pub struct SharedPeerCrypto { pub struct SharedPeerCrypto {
peers: Arc<Mutex<HashMap<SocketAddr, CryptoCore, Hash>>> peers: Arc<Mutex<HashMap<SocketAddr, Arc<CryptoCore>, Hash>>>
} }
impl SharedPeerCrypto { impl SharedPeerCrypto {