vpncloud/src/crypto/mod.rs

494 lines
17 KiB
Rust
Raw Normal View History

2020-09-24 17:48:13 +00:00
mod core;
mod init;
mod rotate;
pub use self::core::{EXTRA_LEN, TAG_LEN};
use self::{
core::{test_speed, CryptoCore},
init::{InitResult, InitState, CLOSING},
rotate::RotationState
};
use crate::{
error::Error,
types::NodeId,
util::{from_base62, to_base62, MsgBuffer}
};
use ring::{
aead::{self, Algorithm, LessSafeKey, UnboundKey},
agreement::{EphemeralPrivateKey, UnparsedPublicKey},
pbkdf2,
rand::{SecureRandom, SystemRandom},
signature::{Ed25519KeyPair, KeyPair, ED25519_PUBLIC_KEY_LEN}
};
use smallvec::{smallvec, SmallVec};
use std::{fmt::Debug, io::Read, num::NonZeroU32, sync::Arc, time::Duration};
use thiserror::Error;
const SALT: &[u8; 32] = b"vpncloudVPNCLOUDvpncl0udVpnCloud";
const INIT_MESSAGE_FIRST_BYTE: u8 = 0xff;
const MESSAGE_TYPE_ROTATION: u8 = 0x10;
pub type Ed25519PublicKey = [u8; ED25519_PUBLIC_KEY_LEN];
pub type EcdhPublicKey = UnparsedPublicKey<SmallVec<[u8; 96]>>;
pub type EcdhPrivateKey = EphemeralPrivateKey;
pub type Key = SmallVec<[u8; 32]>;
const DEFAULT_ALGORITHMS: [&str; 3] = ["AES128", "AES256", "CHACHA20"];
#[cfg(test)]
const SPEED_TEST_TIME: f32 = 0.02;
#[cfg(not(test))]
const SPEED_TEST_TIME: f32 = 0.1;
const ROTATE_INTERVAL: usize = 120;
pub trait Payload: Debug + PartialEq + Sized {
fn write_to(&self, buffer: &mut MsgBuffer);
fn read_from<R: Read>(r: R) -> Result<Self, Error>;
}
#[derive(Clone)]
pub struct Algorithms {
pub algorithm_speeds: SmallVec<[(&'static Algorithm, f32); 3]>,
pub allow_unencrypted: bool
}
#[derive(Debug, Default, Deserialize, Serialize, Clone, PartialEq)]
#[serde(rename_all = "kebab-case", deny_unknown_fields, default)]
pub struct Config {
pub password: Option<String>,
pub private_key: Option<String>,
pub public_key: Option<String>,
pub trusted_keys: Vec<String>,
pub algorithms: Vec<String>
}
pub struct Crypto {
node_id: NodeId,
key_pair: Arc<Ed25519KeyPair>,
2020-10-11 19:45:28 +00:00
trusted_keys: Arc<[Ed25519PublicKey]>,
2020-09-24 17:48:13 +00:00
algorithms: Algorithms
}
impl Crypto {
pub fn new(node_id: NodeId, config: &Config) -> Result<Self, Error> {
let key_pair = if let Some(priv_key) = &config.private_key {
if let Some(pub_key) = &config.public_key {
Self::parse_keypair(priv_key, pub_key)?
} else {
Self::parse_private_key(priv_key)?
}
} else if let Some(password) = &config.password {
Self::keypair_from_password(password)
} else {
return Err(Error::InvalidConfig("Either private_key or password must be set"))
};
let mut trusted_keys = vec![];
for tn in &config.trusted_keys {
trusted_keys.push(Self::parse_public_key(tn)?);
}
if trusted_keys.is_empty() {
info!("Trusted keys not set, trusting only own public key");
let mut key = [0; ED25519_PUBLIC_KEY_LEN];
key.clone_from_slice(key_pair.public_key().as_ref());
trusted_keys.push(key);
}
let mut algos = Algorithms { algorithm_speeds: smallvec![], allow_unencrypted: false };
let algorithms = config.algorithms.iter().map(|a| a as &str).collect::<Vec<_>>();
let allowed = if algorithms.is_empty() { &DEFAULT_ALGORITHMS } else { &algorithms as &[&str] };
let duration = Duration::from_secs_f32(SPEED_TEST_TIME);
let mut speeds = Vec::new();
for name in allowed {
let algo = match &name.to_uppercase() as &str {
"UNENCRYPTED" | "NONE" | "PLAIN" => {
algos.allow_unencrypted = true;
warn!("Crypto settings allow unencrypted connections");
continue
}
"AES128" | "AES128_GCM" | "AES_128" | "AES_128_GCM" => &aead::AES_128_GCM,
"AES256" | "AES256_GCM" | "AES_256" | "AES_256_GCM" => &aead::AES_256_GCM,
"CHACHA" | "CHACHA20" | "CHACHA20_POLY1305" => &aead::CHACHA20_POLY1305,
_ => return Err(Error::InvalidConfig("Unknown crypto method"))
};
let speed = test_speed(algo, &duration);
algos.algorithm_speeds.push((algo, speed as f32));
speeds.push((name, speed as f32));
}
if !speeds.is_empty() {
info!(
"Crypto speeds: {}",
speeds.into_iter().map(|(a, s)| format!("{}: {:.1} MiB/s", a, s)).collect::<Vec<_>>().join(", ")
);
}
2020-10-28 17:54:17 +00:00
Ok(Self {
node_id,
key_pair: Arc::new(key_pair),
trusted_keys: trusted_keys.into_boxed_slice().into(),
algorithms: algos
})
2020-09-24 17:48:13 +00:00
}
2020-09-28 10:50:08 +00:00
pub fn generate_keypair(password: Option<&str>) -> (String, String) {
2020-09-24 17:48:13 +00:00
let mut bytes = [0; 32];
2020-09-28 10:50:08 +00:00
match password {
None => {
let rng = SystemRandom::new();
rng.fill(&mut bytes).unwrap();
}
Some(password) => {
pbkdf2::derive(
pbkdf2::PBKDF2_HMAC_SHA256,
NonZeroU32::new(4096).unwrap(),
SALT,
password.as_bytes(),
&mut bytes
);
}
}
2020-09-24 17:48:13 +00:00
let keypair = Ed25519KeyPair::from_seed_unchecked(&bytes).unwrap();
let privkey = to_base62(&bytes);
let pubkey = to_base62(keypair.public_key().as_ref());
(privkey, pubkey)
}
fn keypair_from_password(password: &str) -> Ed25519KeyPair {
let mut key = [0; 32];
pbkdf2::derive(pbkdf2::PBKDF2_HMAC_SHA256, NonZeroU32::new(4096).unwrap(), SALT, password.as_bytes(), &mut key);
Ed25519KeyPair::from_seed_unchecked(&key).unwrap()
}
fn parse_keypair(privkey: &str, pubkey: &str) -> Result<Ed25519KeyPair, Error> {
let privkey = from_base62(privkey).map_err(|_| Error::InvalidConfig("Failed to parse private key"))?;
let pubkey = from_base62(pubkey).map_err(|_| Error::InvalidConfig("Failed to parse public key"))?;
let keypair = Ed25519KeyPair::from_seed_and_public_key(&privkey, &pubkey)
.map_err(|_| Error::InvalidConfig("Keys rejected by crypto library"))?;
Ok(keypair)
}
fn parse_private_key(privkey: &str) -> Result<Ed25519KeyPair, Error> {
let privkey = from_base62(privkey).map_err(|_| Error::InvalidConfig("Failed to parse private key"))?;
let keypair = Ed25519KeyPair::from_seed_unchecked(&privkey)
.map_err(|_| Error::InvalidConfig("Key rejected by crypto library"))?;
Ok(keypair)
}
fn parse_public_key(pubkey: &str) -> Result<Ed25519PublicKey, Error> {
let pubkey = from_base62(pubkey).map_err(|_| Error::InvalidConfig("Failed to parse public key"))?;
if pubkey.len() != ED25519_PUBLIC_KEY_LEN {
return Err(Error::InvalidConfig("Failed to parse public key"))
}
let mut result = [0; ED25519_PUBLIC_KEY_LEN];
result.clone_from_slice(&pubkey);
Ok(result)
}
pub fn peer_instance<P: Payload>(&self, payload: P) -> PeerCrypto<P> {
PeerCrypto::new(
self.node_id,
payload,
self.key_pair.clone(),
self.trusted_keys.clone(),
self.algorithms.clone()
)
}
}
#[derive(Debug, PartialEq)]
pub enum MessageResult<P: Payload> {
Message(u8),
2020-09-28 10:50:08 +00:00
Initialized(P),
InitializedWithReply(P),
2020-09-24 17:48:13 +00:00
Reply,
None
}
pub struct PeerCrypto<P: Payload> {
#[allow(dead_code)]
node_id: NodeId,
init: Option<InitState<P>>,
rotation: Option<RotationState>,
unencrypted: bool,
core: Option<CryptoCore>,
rotate_counter: usize
}
impl<P: Payload> PeerCrypto<P> {
pub fn new(
2020-10-11 19:45:28 +00:00
node_id: NodeId, init_payload: P, key_pair: Arc<Ed25519KeyPair>, trusted_keys: Arc<[Ed25519PublicKey]>,
2020-09-24 17:48:13 +00:00
algorithms: Algorithms
) -> Self
{
Self {
node_id,
init: Some(InitState::new(node_id, init_payload, key_pair, trusted_keys, algorithms)),
rotation: None,
unencrypted: false,
core: None,
rotate_counter: 0
}
}
fn get_init(&mut self) -> Result<&mut InitState<P>, Error> {
if let Some(init) = &mut self.init {
Ok(init)
} else {
Err(Error::InvalidCryptoState("Initialization already finished"))
}
}
fn get_core(&mut self) -> Result<&mut CryptoCore, Error> {
if let Some(core) = &mut self.core {
Ok(core)
} else {
Err(Error::InvalidCryptoState("Crypto core not ready yet"))
}
}
fn get_rotation(&mut self) -> Result<&mut RotationState, Error> {
if let Some(rotation) = &mut self.rotation {
Ok(rotation)
} else {
Err(Error::InvalidCryptoState("Key rotation not initialized"))
}
}
pub fn initialize(&mut self, out: &mut MsgBuffer) -> Result<(), Error> {
let init = self.get_init()?;
if init.stage() != init::STAGE_PING {
Err(Error::InvalidCryptoState("Initialization already ongoing"))
} else {
2020-10-06 20:52:14 +00:00
init.send_ping(out);
2020-09-24 17:48:13 +00:00
out.prepend_byte(INIT_MESSAGE_FIRST_BYTE);
Ok(())
}
}
pub fn is_ready(&self) -> bool {
self.core.is_some()
}
2020-10-28 17:54:17 +00:00
pub fn algorithm_name(&self) -> &'static str {
if let Some(ref core) = self.core {
let algo = core.algorithm();
if algo == &aead::CHACHA20_POLY1305 {
2020-10-29 21:12:33 +00:00
"CHACHA20"
2020-10-28 17:54:17 +00:00
} else if algo == &aead::AES_128_GCM {
2020-10-29 21:12:33 +00:00
"AES128"
2020-10-28 17:54:17 +00:00
} else if algo == &aead::AES_256_GCM {
2020-10-29 21:12:33 +00:00
"AES256"
2020-10-28 17:54:17 +00:00
} else {
unreachable!()
}
} else {
2020-10-29 21:12:33 +00:00
"PLAIN"
2020-10-28 17:54:17 +00:00
}
}
2020-09-24 17:48:13 +00:00
fn handle_init_message(&mut self, buffer: &mut MsgBuffer) -> Result<MessageResult<P>, Error> {
let result = self.get_init()?.handle_init(buffer)?;
if !buffer.is_empty() {
buffer.prepend_byte(INIT_MESSAGE_FIRST_BYTE);
}
match result {
InitResult::Continue => Ok(MessageResult::Reply),
2020-09-28 10:50:08 +00:00
InitResult::Success { peer_payload, is_initiator } => {
2020-09-24 17:48:13 +00:00
self.core = self.get_init()?.take_core();
if self.core.is_none() {
self.unencrypted = true;
}
if self.get_init()?.stage() == init::CLOSING {
self.init = None
}
if self.core.is_some() {
2020-10-28 23:09:40 +00:00
self.rotation = Some(RotationState::new(!is_initiator, buffer));
2020-09-24 17:48:13 +00:00
}
if !is_initiator {
if self.unencrypted {
2020-09-28 10:50:08 +00:00
return Ok(MessageResult::Initialized(peer_payload))
}
2020-09-24 17:48:13 +00:00
assert!(!buffer.is_empty());
buffer.prepend_byte(MESSAGE_TYPE_ROTATION);
self.encrypt_message(buffer)?;
}
2020-09-28 10:50:08 +00:00
Ok(MessageResult::InitializedWithReply(peer_payload))
2020-09-24 17:48:13 +00:00
}
}
}
fn handle_rotate_message(&mut self, data: &[u8]) -> Result<(), Error> {
if self.unencrypted {
return Ok(())
}
if let Some(rot) = self.get_rotation()?.handle_message(data)? {
let core = self.get_core()?;
let algo = core.algorithm();
let key = LessSafeKey::new(UnboundKey::new(algo, &rot.key[..algo.key_len()]).unwrap());
core.rotate_key(key, rot.id, rot.use_for_sending);
}
Ok(())
}
fn encrypt_message(&mut self, buffer: &mut MsgBuffer) -> Result<(), Error> {
if self.unencrypted {
return Ok(())
}
self.get_core()?.encrypt(buffer);
Ok(())
}
fn decrypt_message(&mut self, buffer: &mut MsgBuffer) -> Result<(), Error> {
if self.unencrypted {
return Ok(())
}
self.get_core()?.decrypt(buffer)
}
pub fn handle_message(&mut self, buffer: &mut MsgBuffer) -> Result<MessageResult<P>, Error> {
if buffer.is_empty() {
return Err(Error::InvalidCryptoState("No message in buffer"))
}
if is_init_message(buffer.buffer()) {
debug!("Received init message");
buffer.take_prefix();
self.handle_init_message(buffer)
} else {
debug!("Received encrypted message");
self.decrypt_message(buffer)?;
let msg_type = buffer.take_prefix();
if msg_type == MESSAGE_TYPE_ROTATION {
debug!("Received rotation message");
self.handle_rotate_message(buffer.buffer())?;
buffer.clear();
Ok(MessageResult::None)
} else {
Ok(MessageResult::Message(msg_type))
}
}
}
pub fn send_message(&mut self, type_: u8, buffer: &mut MsgBuffer) -> Result<(), Error> {
assert_ne!(type_, MESSAGE_TYPE_ROTATION);
buffer.prepend_byte(type_);
self.encrypt_message(buffer)
}
pub fn every_second(&mut self, out: &mut MsgBuffer) -> Result<MessageResult<P>, Error> {
out.clear();
if let Some(ref mut core) = self.core {
core.every_second()
}
if let Some(ref mut init) = self.init {
init.every_second(out)?;
}
if self.init.as_ref().map(|i| i.stage()).unwrap_or(CLOSING) == CLOSING {
self.init = None
}
if !out.is_empty() {
out.prepend_byte(INIT_MESSAGE_FIRST_BYTE);
return Ok(MessageResult::Reply)
}
if let Some(ref mut rotate) = self.rotation {
self.rotate_counter += 1;
if self.rotate_counter >= ROTATE_INTERVAL {
self.rotate_counter = 0;
2020-10-28 23:09:40 +00:00
if let Some(rot) = rotate.cycle(out) {
2020-09-24 17:48:13 +00:00
let core = self.get_core()?;
let algo = core.algorithm();
let key = LessSafeKey::new(UnboundKey::new(algo, &rot.key[..algo.key_len()]).unwrap());
core.rotate_key(key, rot.id, rot.use_for_sending);
}
if !out.is_empty() {
out.prepend_byte(MESSAGE_TYPE_ROTATION);
self.encrypt_message(out)?;
return Ok(MessageResult::Reply)
}
}
}
Ok(MessageResult::None)
}
}
pub fn is_init_message(msg: &[u8]) -> bool {
!msg.is_empty() && msg[0] == INIT_MESSAGE_FIRST_BYTE
}
#[cfg(test)]
mod tests {
use super::*;
use crate::types::NODE_ID_BYTES;
fn create_node(config: &Config) -> PeerCrypto<Vec<u8>> {
let rng = SystemRandom::new();
let mut node_id = [0; NODE_ID_BYTES];
rng.fill(&mut node_id).unwrap();
let crypto = Crypto::new(node_id, config).unwrap();
crypto.peer_instance(vec![])
}
#[test]
fn normal() {
let config = Config { password: Some("test".to_string()), ..Default::default() };
let mut node1 = create_node(&config);
let mut node2 = create_node(&config);
let mut msg = MsgBuffer::new(16);
node1.initialize(&mut msg).unwrap();
assert!(!msg.is_empty());
debug!("Node1 -> Node2");
let res = node2.handle_message(&mut msg).unwrap();
assert_eq!(res, MessageResult::Reply);
assert!(!msg.is_empty());
debug!("Node1 <- Node2");
let res = node1.handle_message(&mut msg).unwrap();
2020-09-28 10:50:08 +00:00
assert_eq!(res, MessageResult::InitializedWithReply(vec![]));
2020-09-24 17:48:13 +00:00
assert!(!msg.is_empty());
debug!("Node1 -> Node2");
let res = node2.handle_message(&mut msg).unwrap();
2020-09-28 10:50:08 +00:00
assert_eq!(res, MessageResult::InitializedWithReply(vec![]));
2020-09-24 17:48:13 +00:00
assert!(!msg.is_empty());
debug!("Node1 <- Node2");
let res = node1.handle_message(&mut msg).unwrap();
assert_eq!(res, MessageResult::None);
assert!(msg.is_empty());
let mut buffer = MsgBuffer::new(16);
let rng = SystemRandom::new();
buffer.set_length(1000);
rng.fill(buffer.message_mut()).unwrap();
for _ in 0..1000 {
node1.send_message(1, &mut buffer).unwrap();
let res = node2.handle_message(&mut buffer).unwrap();
assert_eq!(res, MessageResult::Message(1));
match node1.every_second(&mut msg).unwrap() {
MessageResult::None => (),
MessageResult::Reply => {
let res = node2.handle_message(&mut msg).unwrap();
assert_eq!(res, MessageResult::None);
}
other => assert_eq!(other, MessageResult::None)
}
match node2.every_second(&mut msg).unwrap() {
MessageResult::None => (),
MessageResult::Reply => {
let res = node1.handle_message(&mut msg).unwrap();
assert_eq!(res, MessageResult::None);
}
other => assert_eq!(other, MessageResult::None)
}
}
}
}